Altered Inactivation of Ca2+ Current and Ca2+ Release in Mouse Muscle Fibers Deficient in the DHP receptor γ1 subunit

نویسندگان

  • Daniel Ursu
  • Ralph Peter Schuhmeier
  • Marc Freichel
  • Veit Flockerzi
  • Werner Melzer
چکیده

Functional impacts of the skeletal muscle-specific Ca2+ channel subunit gamma1 have previously been studied using coexpression with the cardiac alpha1C polypeptide in nonmuscle cells and primary-cultured myotubes of gamma1-deficient mice. Data from single adult muscle fibers of gamma-/- mice are not yet available. In the present study, we performed voltage clamp experiments on enzymatically isolated mature muscle fibers of the m. interosseus obtained from gamma+/+ and gamma-/- mice. We measured L-type Ca2+ inward currents and intracellular Ca2+ transients during 100-ms step depolarizations from a holding potential of -80 mV. Ratiometric Ca2+ transients were analyzed with a removal model fit approach to calculate the flux of Ca2+ from the sarcoplasmic reticulum. Ca2+ current density, Ca2+ release flux, and the voltage dependence of activation of both Ca2+ current and Ca2+ release were not significantly different. By varying the holding potential and recording Ca2+ current and Ca2+ release flux induced by 100-ms test depolarizations to +20 mV, we studied quasi-steady-state properties of slow voltage-dependent inactivation. For the Ca2+ current, these experiments showed a right-shifted voltage dependence of inactivation. Importantly, we could demonstrate that a very similar shift occurred also in the inactivation curve of Ca2+ release. Voltages of half maximal inactivation were altered by 16 (current) and 14 mV (release), respectively. Muscle fiber bundles, activated by elevated potassium concentration (120 mM), developed about threefold larger contracture force in gamma-/- compared with gamma+/+. This difference was independent of the presence of extracellular Ca2+ and likely results from the lower sensitivity to voltage-dependent inactivation of Ca2+ release. These results demonstrate a specific alteration of voltage-dependent inactivation of both Ca2+ entry and Ca2+ release by the gamma1 subunit of the dihydropyridine receptor in mature muscle fibers of the mouse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-signaling between L-type Ca2+ channels and ryanodine receptors in rat ventricular myocytes

Calcium-mediated cross-signaling between the dihydropyridine (DHP) receptor, ryanodine receptor, and Na(+)-Ca2+ exchanger was examined in single rat ventricular myocytes where the diffusion distance of Ca2+ was limited to < 50 nm by dialysis with high concentrations of Ca2+ buffers. Dialysis of the cell with 2 mM Ca(2+)- indicator dye, Fura-2, or 2 mM Fura-2 plus 14 mM EGTA decreased the magnit...

متن کامل

Ryanodine does not affect calcium current in guinea pig ventricular myocytes in which Ca2+ is buffered.

Calcium current in mammalian ventricular muscle is altered in the presence of ryanodine. Previous studies performed on rat ventricular cells have shown a slowing of Ca2+ current inactivation and suggest the hypothesis that ryanodine, by reducing the release of Ca2+ from the sarcoplasmic reticulum, reduces the availability of Ca2+ for inactivation of Ca2+ current (Ca(2+)-dependent inactivation)....

متن کامل

BAY K 8644 modifies Ca2+cross signaling between DHP and ryanodine receptors in rat ventricular myocytes.

The amplification factor of dihydropyridine (DHP)/ryanodine receptors was defined as the amount of Ca2+ released from the sarcoplasmic reticulum (SR) relative to the influx of Ca2+ through L-type Ca2+ channels in rat ventricular myocytes. The amplification factor showed steep voltage dependence at potentials negative to -10 mV but was less dependent on voltage at potentials positive to this val...

متن کامل

Calcium Signaling in Transgenic Mice Overexpressing Cardiac Na+-Ca2+ Exchanger

We have produced transgenic mice which overexpress cardiac Na(+)-Ca2+ exchange activity. Overexpression has been assessed by Western blot, Northern blot, and immunofluorescence. Functional overexpression was analyzed using membrane vesicles and isolated ventricular myocytes. In whole cell clamped myocytes dialyzed with 0.1-0.2 mM Fura-2, the magnitude of ICa and Ca2+i-transient triggered by ICa...

متن کامل

Excitation-contraction coupling in skeletal muscle of a mouse lacking the dihydropyridine receptor subunit gamma1.

1. In skeletal muscle, dihydropyridine (DHP) receptors control both Ca(2+) entry (L-type current) and internal Ca(2+) release in a voltage-dependent manner. Here we investigated the question of whether elimination of the skeletal muscle-specific DHP receptor subunit gamma1 affects excitation-contraction (E-C) coupling. We studied intracellular Ca(2+) release and force production in muscle prepa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2004